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Contribution

We present a new architecture for implementing an
Efficient Unitary Neural Network (EUNNSs)

1) The representation capacity of the unitary space in
an EUNN is fully tunable, ranging from a subspace of
SU(N) to the entire unitary space.

2) The computational complexity for training an EUNN
is merely O(1) per parameter.

3) We find that our architecture significantly
outperforms both other state-of-the-art unitary RNNs
and the LSTM architecture, in terms of the final
performance and/or the wall-clock training speed.

Background

Gradient Vanishing/Explosion Problem
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Conventional
Solution: LSTM

require gradient clipping

New Solution: Unitary RNN

In mathematics, a complex square matrix U is unitary if
its conjugate transpose U* is also its inverse

U'U=U0U"=1
Keep the norm of vectors:

[[UX]| = [|x]]
Related works
» Restricted space Unitary Matrix Paramtrization [1]
* Full-capacity Unitary Matrix by projection [2]

» Orthogonal parametrization by reflection[3]
» Orthogonal matrix by regularization[4]

Model

Tunable Efficient Unitary Parametrization
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Implementation Algorithm

Algorithm 1 Efficient implementation for F' with parame-
ter 0; and ¢;.

Input: input x, size IV; parameters 6 and ¢, size N/2;
constant permuatation index list ind; and inds.
Output: output y, size N.

v < concatenate(cos 6, cos 6 * exp(i@))

v < concatenate(sin 6, - sin 6 * exp(i¢))

v1 < permute(vy,indy)

va + permute(vg,ind;)

Y < V1 * X + va * permute(x, indz)

sparse block
diagonal matrix

no need to implement back propagation

Complexity
Model Time complexity of one number of parameters Transition matrix
online gradient step in the hidden matrix search space
URNN O(TNlogN) O(N) subspace of U(XV)
PURNN O(TN? + N?) O(N?) full space of U(N)
EURNN (tunable style) O(TNL) O(NL) tunable space of U(N)
EURNN (FFT style) O(TNlog N) O(Nlog N) subspace of U(NV)
Advantages

1) Efficient: O(1) operation per parameter

2) Tunable: span from small subspace to full
unitary space

3) Easy implementation: element-wise functions

4) FFT approximation provides further speed-up

Experiment

We compare our model to LSTM and other unitary RNN with same
number of parameters

Copying Memory Task, delay time T=1000
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Permuted-Pixel MNIST Task

EURNN outperforms LSTM in both .,
final performance and speed.

EURNN achieves highest accuracy. .|

Model hidden size number of validation test 0.7
(capacity) accuracy — accuracy
LSTM 80 16k 0.908 0.902

URNN 512 16k 0942 0933 06 RN Wi NS035
PURNN 116 16k 0922 0921 RN with No512 FFT
EURNN (tunable style) 1024 (2) 133k 0940 0937 —_ LSTM with N=80
EURNN (FFT style) 512 (FFT) 9.0k 0928 0925 0s
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TIMIT Speech Spectrum Prediction

~6  TIMIT spectrum

-12 sampled in 8 GHz,
-18 normalized, Fourier
_24 transformed.
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Each RNN model is
required to predict
next frame given
previous frames.
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EURNN outperforms LSTM in real task.
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Tensorflow: https://github.com/jingli9111/EUNN-tensorflow
PyTorch: https://github.com/jingli9111/URNN-PyTorch
Theano: h EUNN-th
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