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Spawning rings of exceptional points out of
Dirac cones
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The Dirac cone underlies many unique electronic properties of
graphene1 and topological insulators, and its band structure—
two conical bands touching at a single point—has also been rea-
lized for photons in waveguide arrays2, atoms in optical lattices3,
and through accidental degeneracy4,5. Deformation of the Dirac
cone often reveals intriguing properties; an example is the
quantum Hall effect, where a constant magnetic field breaks the
Dirac cone into isolated Landau levels. A seemingly unrelated phe-
nomenon is the exceptional point6,7, also known as the parity–time
symmetry breaking point8–11, where two resonances coincide in
both their positions and widths. Exceptional points lead to
counter-intuitive phenomena such as loss-induced transparency12,
unidirectional transmission or reflection11,13,14, and lasers with
reversed pump dependence15 or single-mode operation16,17. Dirac
cones and exceptional points are connected: it was theoretically
suggested that certain non-Hermitian perturbations can deform
a Dirac cone and spawn a ring of exceptional points18–20. Here we
experimentally demonstrate such an ‘exceptional ring’ in a photo-
nic crystal slab. Angle-resolved reflection measurements of the
photonic crystal slab reveal that the peaks of reflectivity follow
the conical band structure of a Dirac cone resulting from accidental
degeneracy, whereas the complex eigenvalues of the system are
deformed into a two-dimensional flat band enclosed by an excep-
tional ring. This deformation arises from the dissimilar radiation
rates of dipole and quadrupole resonances, which play a role ana-
logous to the loss and gain in parity–time symmetric systems. Our
results indicate that the radiation existing in any open system can
fundamentally alter its physical properties in ways previously
expected only in the presence of material loss and gain.

Closed and lossless physical systems are described by Hermitian
operators, which guarantee realness of the eigenvalues and a complete
set of eigenfunctions that are orthogonal to each other. On the other
hand, systems with open boundaries7,21 or with material loss and
gain9–17,19 are non-Hermitian6, and have non-orthogonal eigenfunc-
tions with complex eigenvalues where the imaginary part corresponds
to decay or growth. The most drastic difference between Hermitian
and non-Hermitian systems is that the latter exhibit exceptional points
(EPs) where both the real and the imaginary parts of the eigenvalues
coalesce. At an EP, two (or more) eigenfunctions collapse into one so
the eigenspace no longer forms a complete basis, and this eigenfunc-
tion becomes orthogonal to itself under the unconjugated ‘inner prod-
uct’6,7. To date, most studies of the EP and its intriguing consequences
concern parity–time symmetric systems that rely on material loss and
gain9–17,19, but EPs are a general property that require only non-
Hermiticity. Here, we show the existence of EPs in a photonic crystal
slab with negligible absorption loss and no artificial gain. When a
Dirac-cone system has dissimilar radiation rates, the band structure
is altered abruptly to show branching features with a ring of EPs. We

provide a complete picture of this system, ranging from an analytic
model and numerical simulations to experimental observations; taken
together, these results illustrate the role of radiation-induced non-
Hermiticity that bridges the study of EPs and the study of Dirac cones.

We start by showing that non-Hermiticity from radiation can
deform an accidental Dirac point into a ring of EPs. First, consider a
two-dimensional photonic crystal (Fig. 1a inset), where a square lattice
(periodicity a) of circular air holes (radius r) is introduced in a dielec-
tric material. This is a Hermitian system, as there is no material gain or
loss and no open boundary for radiation. By tuning a system parameter
(for example, r), one can achieve accidental degeneracy between a
quadrupole mode and two degenerate dipole modes at the C point
(centre of the Brillouin zone), leading to a linear Dirac dispersion due
to the anti-crossing between two bands with the same symmetry4,22.
The accidental Dirac dispersion from the effective Hamiltonian model
(see equation (1) below with cd 5 0) is shown as solid lines in Fig. 1a,
agreeing with numerical simulation results (symbols). In the effective
Hamiltonian we do not consider the dispersionless third band (grey
line) owing to symmetry arguments (Supplementary Information sec-
tion I), although this third band cannot be neglected in certain calcula-
tions, including the Berry phase and effective medium properties23.

Next, we consider a similar, but open, system: a photonic crystal slab
(Fig. 1b inset) with finite thickness h. With the open boundary, modes
within the radiation continuum become resonances because they radi-
ate by coupling to extended plane waves in the surrounding medium.
Non-Hermitian perturbations need to be included in the Hamiltonian
to account for the radiation loss. To the leading order, radiation of the
dipole mode can be described by adding an imaginary part 2icd to the
Hamiltonian, while the quadrupole mode does not radiate owing to its
symmetry mismatch with the plane waves24. Specifically, at theC point
the system has C2 rotational symmetry (invariant under 180u rotation
around the z axis), and the quadrupole mode does not couple to the
radiating plane wave because the former has a field profile E(r) that is
even under C2 rotation, E(r)~ÔC2 E(r), whereas the latter is odd,
E(r)~{ÔC2 E(r). The effective Hamiltonian is

Hef f ~
v0 vg kj j

vg kj j v0{icd

! "
ð1Þ

with complex eigenvalues

v+~v0{i
cd

2
+vg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj j2{k2

c

q
ð2Þ

where v0 is the frequency at accidental degeneracy, vg is the group
velocity of the linear Dirac dispersion in the absence of radiation, jkj is
the magnitude of the in-plane wavevector (kx, ky), and kc:cd=2vg.
Here, one of the three bands is decoupled from the other two and
is not included in equation (1) (see Supplementary Information sec-
tion II). In equation (2), a ring defined by jkj5 kc separates the k space
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into two regions: inside the ring (jkj, kc), Re(v6) are dispersionless
and degenerate; outside the ring (jkj. kc), Im(v6) are dispersionless
and degenerate. In the vicinity of kc, Im(v6) and Re(v6) exhibit
square-root dispersion (also known as branching behaviour6) inside
and outside the ring, respectively. Exactly on the ring (jkj5 kc), the
two eigenvalues v6 are degenerate in both real and imaginary parts;
meanwhile, the matrix Heff becomes defective with an incomplete
eigenspace spanned by only one eigenvector (1, 2i)T that is orthogonal
to itself under the unconjugated ‘inner product’, given by aTb for
vectors a and b. This self-orthogonality is the definition of EPs; hence,
here we have not just one EP, but a continuous ring of EPs. We call it an
exceptional ring.

Figure 1b, c shows the complex eigenvalues of the photonic crystal
slab structure calculated numerically (symbols), which closely follow
the analytic model of equation (2) shown as solid lines in the figure. In
Supplementary Fig. 1, we show that the two eigenvectors indeed
coalesce into one at the EP, which is impossible in Hermitian systems
(also see Supplementary Information section III). When the radius r of
the holes is tuned away from accidental degeneracy, the exceptional
ring and the associated branching behaviour disappear, as shown in
Supplementary Fig. 2. Several properties of the photonic crystal slab
contribute to the existence of this exceptional ring. Owing to peri-
odicity, one can probe the dispersion from two degrees of freedom,
kx and ky, in just one structure. The open boundary provides radiation
loss, and the C2 rotational symmetry differentiates the radiation loss of
the dipole mode and of the quadrupole mode.

We can rigorously show that the exceptional ring exists in realistic
photonic crystal slabs, not just in the effective Hamiltonian model. Our
proof is based on the unique topological property of EPs: when the
system parameters evolve adiabatically along a loop encircling an EP,
the two eigenvalues switch their positions when the system returns to
its initial parameters7,21,25, in contrast to the typical case where the two
eigenvalues return to themselves. Using this property, we numerically

show, in Supplementary Fig. 3 and Supplementary Information sec-
tion IV, that the complex eigenvalues always switch their positions
along every direction in the k space, and therefore prove the existence
of this exceptional ring. As opposed to the simplified effective Hamil-
tonian model, in a real photonic crystal slab, the EP may exist at a
slightly different magnitude of k and for a slightly different hole radius
r along different directions in the k space, but this variation is small and
negligible in practice (Supplementary Information section V).

To demonstrate the existence of the exceptional ring in such a
system, we fabricate large-area periodic patterns in a Si3N4 slab
(n 5 2.02 in the visible spectrum, thickness 180 nm) on top of 6mm
of silica (n 5 1.46) using interference photolithography24. Scanning
electron microscope (SEM) images of the sample are shown in
Fig. 2a, featuring a square lattice (periodicity a 5 336 nm) of cylin-
drical air holes with radius 109 nm. We immerse the structure into an
optical liquid with a specified refractive index that can be tuned; acci-
dental degeneracy in the Hermitian part is achieved when the liquid
index is selected to be n 5 1.48. We perform angle-resolved reflectivity
measurements (set-up shown in Fig. 2b) between 0u and 2u along the
CR X direction and the CR M direction, for both s and p polariza-
tions. Details of the sample fabrication and the experimental setup can
be found in Supplementary Information section VI. The measured
reflectivity for the relevant polarization is plotted in the upper panel
of Fig. 2c, showing good agreement with numerical simulation results
(lower panel), with differences coming from scattering due to surface
roughness, inhomogeneous broadening, and the uncertainty in the
measurements of system parameters. The complete experimental
result for both polarizations is shown in Supplementary Fig. 4; the
third and dispersionless band shows up in the other polarization,
decoupled from the two bands of interest.

The peaks of reflectivity (dark red colour in Fig. 2c) follow the linear
Dirac dispersion; this feature disappears for structures with different
radii that do not reach accidental degeneracy (experimental results in

Hermitian Non-Hermitian

a b c

0 0.01 0.01
0

kxa/2π kya/2π

Fr
eq

ue
nc

y,
 ω

a/
2π

c

0.01 0 0.01
|k|a/2π

Γ XM

0.01 0 0.01
|k|a/2π

–2

–1

0
Γ XMΓ

0.60

0.59

Fr
eq

ue
nc

y,
 R

e(
ω

)a
/2
πc

Im
(ω

)a
/2
πc

 ×
 1

03
Im

(ω
)a

/2
πc

 ×
 1

03

0.01 0
|k|a/2π

M

0.60

0.59

0

–3

2rc

h

X

0.01

2r
0.54

0.55

–0.01Fr
eq

ue
nc

y,
 ω

a/
2π

c

0.54

0.55

–0.01 Fr
eq

ue
nc

y,
 R

e(
ω

)a
/2
πc

0 0.01 0.01
0

kxa/2π kya/2π

–0.01
–0.01

0 0.01 0.01
0

kxa/2π kya/2π

–0.01
–0.01

–2

–1

Figure 1 | Accidental degeneracy in Hermitian and non-Hermitian
photonic crystals. a, Band structure of a two-dimensional photonic crystal
consisting of a square lattice of circular air holes. Tuning the radius r leads to
accidental degeneracy between a quadrupole band and two doubly degenerate
dipole bands, resulting in two bands with linear Dirac dispersion (red and blue)
and a flat band (grey). b, c, The real (b) and imaginary (c) parts of the
eigenvalues of an open, and therefore non-Hermitian, system: a
photonic crystal slab with finite thickness, h. By tuning the radius, accidental
degeneracy in the real part can be achieved, but the Dirac dispersion is
deformed owing to the non-Hermiticity. The analytic model predicts that the

real (imaginary) part of the eigenvalue stays as a constant inside (outside) a ring
in the wavevector space, indicating two flat bands in dispersion, with a ring of
exceptional points (EPs) where both the real and the imaginary parts are
degenerate. The orange shaded regions correspond to the inside of the ring. In
the upper panels of a–c, solid lines are predictions from the analytic model and
symbols are from numerical simulations: red squares represent the band
connecting to the quadrupole mode at the centre; blue circles represent the
band connecting to the dipole mode at the centre; and grey crosses represent the
third band that is decoupled from the previous two due to symmetry. The three-
dimensional plots in the lower panels are from simulations.
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Supplementary Fig. 5). Note that the reflection peaks do not follow the
real part of the complex eigenvalues of the Hamiltonian; in fact they
follow the eigenvalues of the Hermitian part of the Hamiltonian, even
though the Hamiltonian is non-Hermitian. To understand this, we
consider a more general two-by-two Hamiltonian of a coupled res-
onance system H and separate it into a Hermitian part A and an anti-
Hermitian part 2iB (A and B are both Hermitian)

H~
v1 k

k v2
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As before, we use v6 to denote the complex eigenvalues of the
Hamiltonian A 2 iB. Physically, matrix A describes a lossless system,
and matrix 2iB adds the effects of loss. In B, the diagonal elements are
loss rates (in our system, they come primarily from radiation), and the
off-diagonal elements arise from overlap of the two radiation patterns,
also known as external coupling of resonances via the continuum.
Modelling the reflectivity using temporal coupled-mode theory
(TCMT), we show that when matrix B is dominated by radiation,
the reflection peaks occur near the eigenvalues V1,2 of the Hermitian
part A and are independent of the anti-Hermitian part 2iB (see
Supplementary Information section VII and Supplementary Fig. 6
for details). Therefore, the linear Dirac dispersion observed in the
measured data of Fig. 2c (dark red) indicates that we have successfully
achieved accidental degeneracy in the eigenvalues of the Hermitian
part, consistent with the simplified model in equation (1). In
Supplementary Fig. 8b, we plot the values of V1,2 extracted from the

reflectivity data through a more rigorous data analysis using TCMT
(described below); the linear dispersion is indeed observed. We note
that when there is substantial non-radiative loss or material gain in the
system, the reflection peaks no longer follow the eigenvalues of the
Hermitian part (see Supplementary Information section VIII and
Supplementary Fig. 7).

The real part of the complex eigenvalues of the Hamiltonian,
Re(v6), behave very differently from the reflectivity peaks.
Simulation results (solid white lines in the lower panel of Fig. 2c) show
Re(v6) is dispersionless at small angles with a branch-point singular-
ity around 0.31u—consistent with the feature predicted by the simpli-
fied Hamiltonian in equation (2). In Fig. 2d, we compare the
reflectivity spectra from simulations (with peaks indicated by red
arrows) with the corresponding complex eigenvalues at three repres-
entative angles (0.8u in blue, 0.31u in green and 0.1u in magenta). At
0.31u, the two complex eigenvalues are degenerate, indicating an EP;
however, the two reflection peaks do not coincide since they represent
the eigenvalues of only the Hermitian part of the Hamiltonian, which
does not have degeneracy here. The dip in reflectivity between the two
peaks (marked as black arrows in Figs 2 and 3) is the coupled-res-
onator-induced transparency (CRIT) that arises from the interference
between radiation of the two resonances26, similar to electromagnet-
ically induced transparency.

Qualitatively, the peak locations of the measured reflectivity spec-
trum reveal the eigenvalues of the Hermitian part, A, and the line-
widths of the peaks reveal the anti-Hermitian part, 2iB; diagonalizing
A 2 iB yields the eigenvalues v6, as illustrated in equation (3). To
be more quantitative, we use TCMT and account for both the direct
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Figure 2 | Experimental reflectivity spectrum and accidental Dirac
dispersion. a, SEM images of the photonic crystal samples: side view (upper
panel) and top view (lower panel). b, Schematic drawing of the measurement
set-up. Linearly polarized light from a super-continuum source is reflected
off the photonic crystal slab (‘sample’) immersed in an optical liquid, and
collected by a spectrometer (SP). The incident angle h is controlled using a
precision rotating stage. BS, beam splitter. c, Reflectivity spectrum of the sample
measured experimentally (upper panel) and calculated numerically (lower
panel) along the CR X and the CR M directions. The peak location
of reflectivity reveals the Hermitian part of the system, which forms Dirac
dispersion due to accidental degeneracy. In the lower panel, white solid lines

indicate the real part of the eigenvalues; spectra and eigenvalues at three
representative angles (marked by dashed lines and circles) are shown in
d. d, Three line cuts of reflectivity R from simulation results. Also shown are the
complex eigenvalues (open circles) calculated numerically. At large angles
(0.8u), the two resonances are far apart, so the reflectivity peaks (red arrows) are
close to the actual positions of the complex eigenvalues. However, at small
angles (0.3u, 0.1u), the coupling between resonances cause the resonance peaks
(red arrows) to have much greater separations in frequency compared to the
complex eigenvalues. The black arrows mark the dips in reflectivity that
correspond to the coupled-resonator induced transparency (CRIT, see text
for details).
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(non-resonant) and the resonant reflection processes including nearby
resonances; the expression for reflectivity is given in Supplementary
Information equation (S20), with the full derivation given in
Supplementary Information section IX. Fitting the reflectivity curves
with the TCMT expression gives us an accurate estimate of the matrix
elements and the eigenvalues; this procedure is the same as our
approach in ref. 27 except that here we additionally account for the
coupling between resonances28. Figure 3a compares the fitted and the
measured reflectivity curves at three representative angles (with more
comparison in Supplementary Fig. 8a); the excellent agreement shows
the validity of the TCMT model. Underneath the reflectivity curves, we
show the complex eigenvalues. The difference between numerically
calculated reflectivity (Fig. 2d) and experimental results (Fig. 3a) stems
from the non-radiative decay channels in our system, mostly due to
scattering loss from the surface roughness24.

Repeating the fitting procedure for the reflectivity spectrum mea-
sured at different angles, we obtain the dispersion curves for all com-
plex eigenvalues, which are plotted in Fig. 3b. Along both directions in
k space (CR X and CR M), the two bands of interest (shown in
blue and red) exhibit the EP behaviour predicted in equation (2): for
jkj, kc the real parts are degenerate and dispersionless; for jkj. kc the
imaginary parts are degenerate and dispersionless; for jkj in the vicin-
ity of kc branching features are observed in the real or imaginary part.
In Fig. 3c, we plot the eigenvalues on the complex plane for both the
CR X and CR M directions. We can see that in both directions, the
two eigenvalues approach each other and become very close at a cer-
tain k point, which is a clear signature of the system being very close to
an EP.

We have shown that non-Hermiticity arising from radiation can
significantly alter fundamental properties of the system, including the
band structures and the density of states; this effect becomes most

prominent near EPs. The photonic crystal slab described here provides
a simple-to-realize platform for studying the influence of EPs on light–
matter interaction, such as for single particle detection21 and modu-
lation of quantum noise. The two-dimensional flat band can also
provide a high density of states and therefore high Purcell factors.
The strong dispersion of loss in the vicinity of theC point can improve
the performance of large-area single-mode photonic crystal lasers29.
The deformation into an exceptional ring is a general phenomenon
that can also be achieved with material gain or loss and for Dirac points
in other lattices19,20. Further studies could advance the understanding
of the connection between the topological property of Dirac points30

and that of EPs25 in general non-Hermitian wave systems, and our
method could go beyond photons to phonons, electrons and atoms.
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Figure 3 | Experimental demonstration of an exceptional ring. a, Examples
of reflection spectrum R from the sample at three different angles (0.8u blue,
0.3u green and 0.1u magenta, solid lines) measured with s-polarized light along
theCR X direction (same setup as in numerical simulations shown in Fig. 2d),
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The orange shaded regions correspond to the inside of the ring. c, Positions of
the eigenvalues (red and blue dashed lines) approach and become very close to
each other (indicated by the two brown arrows), demonstrating near-EP
features in different directions in the momentum space and the existence of
an exceptional ring.
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Section I. Effective Hamiltonian of accidental Dirac points in Hermitian systems
Here we consider the Hermitian system of a 2D square-lattice PhC tuned to accidental de-
generacy between a quadrupole mode and two degenerate dipole modes at the Brillouin zone
center (Γ point). Near Γ point where the in-plane wavevectors kx and ky are small, the effective
Hamiltonian given by first-order degenerate perturbation theory is [1]

H2D
eff =

⎛

⎝
ω0 vgkx vgky
vgkx ω0 0
vgky 0 ω0

⎞

⎠ , (S.1)

which can be transformed to

UH2D
eff U

−1 =

⎛

⎝
ω0 vg|k| 0

vg|k| ω0 0
0 0 ω0

⎞

⎠ (S.2)

with the orthogonal rotation matrix

U =

⎛

⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞

⎠ (S.3)

where cos θ = kx/|k|, sin θ = ky/|k|, and |k| =
√
k2
x + k2

y . After transformation, the 3 × 3
matrix becomes two isolated blocks: the upper 2 × 2 block gives the conical Dirac dispersion
(ω = ω0 ± vg|k|), while the lower block is the intersecting flat band (ω = ω0).

Section II. Effective non-Hermitian Hamiltonian of the exceptional ring
For a 3D PhC slab with finite thickness, the two dipole modes become resonances with finite
lifetime due to their radiation, with eigenvalues becoming complex (ω0 − iγd). With C4 rota-
tional symmetry, these two dipole modes are related by a 90◦ rotation and therefore share the
same complex eigenvalue. Meanwhile, the quadrupole mode does not couple to radiation at the
Γ point due to symmetry mismatch [2], and to leading order its eigenvalue remains at ω0. The
effective non-Hermitian Hamiltonian of the 3D PhC slab thus becomes

H3D
eff =

⎛

⎝
ω0 vgkx vgky
vgkx ω0 − iγd 0
vgky 0 ω0 − iγd

⎞

⎠ , (S.4)

which transforms to

UH3D
eff U

−1 =

⎛

⎝
ω0 vg|k| 0

vg|k| ω0 − iγd 0
0 0 ω0 − iγd

⎞

⎠ (S.5)

with the same matrix U as in equation (S.3). The upper 2 × 2 block is the Heff in equation (1)
of the main text that gives rise to an exceptional ring, while the lower block is the flat band.
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Section III, Eigenfunctions in Hermitian and non-Hermitian systems
In this section, we show the numerically calculated eigenfunctions in the Hermitian PhC and
the non-Hermitian PhC slab, and compare them to the analytical predictions from first-order
perturbation theory.

According to equation S.1, the eigenfunctions of the Hermitian PhC along the kx axis are
Ψ 1 ±Ψ2 with eigenvalues ω0 ± vgkx. Fig. S1a shows that the numerical results agree with this
prediction. These two eigenfunctions are orthogonal to each other, as expected for Hermitian
systems.

In comparison, for the non-Hermitian PhC slab, equation S.4 predicts the two eigenfunc-
tions to merge into one, Ψ1 − iΨ2, at the exceptional point (EP). This prediction also agrees
with our numerical results, shown in Fig. S1b. Both eigenfunctions become very close to the
analytical prediction of Ψ1 − iΨ2. Furthermore, this coalesced eigenfunction is self-orthogonal
under the unconjugated product. Such coalescence of eigenfunctions can never happen in Her-
mitian systems and highlights the effect of non-Hermiticity.

Section IV, Existence of exceptional points along every direction in momentum space
In this section, we demonstrate that EPs exist in all directions in the k space, not only for a
simplified Hamiltonian (equation (1)), but also for realistic structures. To prove their existence,
we use the unique topological property of EPs: when the system evolves adiabatically in the
parameter space around an EP, the eigenvalues will switch their positions at the end of the
loop [3,4]. In our system, the parameter space in which we choose to evolve the eigenfunctions
is three-dimensional, consisting of the two in-plane wavevectors (kx, ky) and the radius of the
air holes r, as shown in Fig. S3a. Here, r can also be other parameters, like the refractive index
of the PhC slab (n), the periodicity of the square lattice (a), or the thickness of the slab (h). For
simplicity of this demonstration, we choose r as the varying parameter while keeping all other
parameters (n, a, and h) fixed throughout.

First, we compare the evolution of the eigenvalues when the system parameters follow (1)
a loop that does not enclose an EP, and (2) one that encloses an EP. Following the loop A →
B → C → D → A in Fig. S3a,b that does not enclose an EP (point EP), we see that the
complex eigenvalues come back to themselves at the end of the loop (Fig. S3c where the red
dot and the blue dot return to their initial positions at the end of the loop). However, following
the loop A′ → B′ → C ′ → D′ → A′ in Fig. S3d, which encloses an EP (point EP), we see that
the complex eigenvalues switch their positions in the complex plane (Fig. S3f where the red dot
and the blue dot switch their positions). This switching of the eigenvalues shows the existence
of an EP along the Γ to X direction, at some particular value of kx and some particular value of
radius r. This shows the existence of the EP without having to locate the exact parameters of
kx and r at which the EP occurs.

Similarly, we can evolve the parameters along any direction θ = tan(ky/kx) in the k space
and check whether an EP exists along this direction or not. As two examples, we show the evo-
lution of the complex eigenvalues when we evolve the parameters along the θ = π/8 direction
following the loop A′′ → B′′ → C ′′ → D′′ → A′′ and along the θ = π/4 direction following
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the loop A′′′ → B′′′ → C ′′′ → D′′′ → A′′′ in Fig. S3g,h. In both cases, we observe the switch-
ing of the eigenvalues, showing the existence of an EP along these two directions. The same
should hold for every direction in k space.

The above calculations show that for every direction θ we examined in the k space, there is
always a particular combination of kc and rc, which supports an EP. However, we note that in
general, different directions can have different kc and different rc, so the exceptional ring for the
realistic PhC slab structure is parameterized by kc(θ) and rc(θ). This angular variation of kc(θ)
and rc(θ) can be described by introducing higher order corrections in the effective Hamiltonian,
which we examine in the next section.

Section V, Generalization of the effective Hamiltonian
Here, we generalize the effective Hamiltonian in equations (1) and (S.5). First, the radiation of
the quadrapole mode is zero only at the Γ point; away from the Γ point, the quadrapole mode
has a k⃗-dependent radiation that is small but non-zero, which we denote with γq. Second, we
consider possible deviation from accidental degeneracy in the Hermitian part, with a frequency
walk-off δ. With these two additional ingredients, the effective Hamiltonian becomes

(
ω0 + δ vgk
vgk ω0

)
− i

(
γq

√
γqγd√

γqγd γd

)
, (S.6)

with complex eigenvalues of

ω± = ω0 +
δ

2
− i

γq + γd
2

±

√
(
vgk − i

√
γqγd

)2 −
(
γd − γq

2
− i

δ

2

)2

, (S.7)

which are generalized forms of equations (1) and (2), respectively. We note that the off-diagonal
term √

γqγd in equation (S.6) is required by energy conservation and time-reversal symme-
try [5], as we will discuss more in the last section. Equation (S.7) shows that EP occurs when
the two conditions {

k = (γd − γq)/(2vg) ≈ γd/2vg,

δ = 2
√
γdγq,

(S.8)

are satisfied. In the region of momentum space of interest, γq is much smaller than γ0 (this can
be seen, for example, from the imaginary parts of Fig. S2a,c), so the first condition becomes
kc ≈ γd/2vg, same as in the simplified model. For a given direction θ in the k space (as
discussed in the previous section), we can vary the magnitude k and the radius r to find the
kc(θ) and rc(θ) where these two conditions are met simultaneously.

We can now analyze the angular dependence of kc(θ) and rc(θ) without having to find their
exact values. The first condition of equation (S.8) says that the angular dependence of kc(θ)
comes from γd and vg; in the PhC slab structure here, we find that γd varies by about 20%
as the angle θ = tan(ky/kx) is varied, while vg remains almost the same; therefore, kc(θ)
potentially varies by around 10% along the exceptional ring. For the second condition of equa-
tion (S.8), we have γd ≈ 5 × 10−3ω0 and γq ≈ 5 × 10−5ω0 for our PhC slab structure, so
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δc = 2
√
γdγq ≈ 1 × 10−3ω0. Again, γd and γq vary by about 20% as the angle θ is changed,

so δc can change by around 2× 10−4ω0. Empirically, we find that a change of δ by 2× 10−4ω0

corresponds to a change in the radius r of around 0.06 nm, which is the estimated range of
variation for rc(θ) of all θ ∈ [0, 2π). This angular variation is much smaller than our structure
can resolve in practice, since the radii of different holes within one fabricated PhC slab will
already differ by more than 0.06 nm. So, in practice a given fabricated structure can be close to
EP along all different directions θ, but is unlikely to be an exact EP for any direction.

Section VI, Sample fabrication and experimental details
The Si3N4 layer was grown with the low-pressure chemical vapor deposition method on a 6µm-
thick cladding of SiO2 on the backbone of a silicon wafer (LioniX). Before exposure, the wafer
was coated with a layer of polymer as anti-reflection coating, a thin layer of SiO2 as an inter-
mediate layer for etching, and a layer of negative photoresist for exposure. The square lattice
pattern was created with Mach−Zehnder interference lithography using a 325-nm He/Cd laser.
The angle between the two arms of the laser beam was chosen for a periodicity of 336 nm. After
exposures, the pattern in the photoresist was transferred to Si3N4 by reactive-ion etching.

The source was a supercontinuum laser from NKT Photonics (SuperKCompact). A polar-
izer selected s- or p-polarized light. The sample was immersed in a colorless liquid with tunable
refractive indices (Cargille Labs). The sample was mounted on two perpendicular motorized
rotation stages (Newport): one to orient the PhC to the Γ-X or Γ-M direction, and the other to
determine the incident angle θ. The reflectivity spectra were measured with a spectrometer with
spectral resolution of 0.02 nm (HR4000; Ocean Optics).

Section VII, Model of reflection from two resonances
In Section IX, we will derive the temporal-coupled coupled theory (TCMT) [5–10] equations
describing the full experimental system. Here, we first consider a simpler scenario to illustrate
the qualitative features of the reflectivity spectrum. Consider two resonances in a photonic
crystal slab, governed by the Hamiltonian in equation (3) of the main text,

H =

(
ω1 κ
κ ω2

)
− i

(
γ1 γ12
γ12 γ2

)
, (S.9)

where the first term is the Hermitian part describing a lossless system, and the second term is
the anti-Hermitian part describing radiation of the two resonances. We ignore non-radiative
loss here for simplicity. Also, we ignore the direct Fresnel reflection between the dielectric
layers. We consider the photonic crystal slab to be mirror symmetric in z direction, with the
two resonances having the same mirror symmetry in z. This simple system describes the basic
elements of resonant reflection. TCMT predicts the reflectivity to be (see Section IX for the full
details)

R(ω) =
1

1 + f 2(ω)
, f(ω) =

(ω − ω1)(ω − ω2)− κ2

γ1(ω − ω2) + γ2(ω − ω1) + 2γ12κ
(S.10)
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with the transmission being T (ω) = 1 − R(ω) since there is no non-radiative loss. We im-
mediately see that the reflectivity reaches its maximal value of 1 when the numerator of f(ω)
vanishes, which happens at two frequencies ω = Ω1,2 with

Ω1,2 =
1

2

[
ω1 + ω2 ±

√
(ω1 − ω2)2 + 4κ2

]
(S.11)

being the eigenvalues for the Hermitian part of the Hamiltonian. Note that the anti-Hermitian
part determines the linewidth but has no effect on the location of the reflectivity peaks. This is
the first main conclusion of this section.

Secondly, we also observe that the reflectivity reaches its minimal value of 0 when the de-
nominator of f(ω) vanishes, which happens at one frequency ω = (γ1ω2 + γ2ω1−2γ12κ)/(γ1 + γ2)
that is in between Ω1 and Ω2. This is called coupled-resonator-induced transparency (CRIT) [11,
12].

We emphasize that the reflectivity peaks, following eigenvalues of the Hermitian part of the
Hamiltonian, are different from the real part of the complex eigenvalues of the Hamiltonian
H . Consider a simple example with κ = 0 (so that Ω1,2 = ω1,2), Ω1,2 = ω0 ± b, and γ1 =
γ2 = γ12 = b. The reflection peaks at Ω1,2 = ω0 ± b, while the two complex eigenvalues are
degenerate at ω+ = ω− = ω0 − ib, whose real part is in the middle of the two reflection peaks.
This explains the reflectivity from the PhC slabs at 0.3◦ shown in Fig. 2d and Fig. 3a, where the
degenerate complex eigenvalues of the system are in between the two reflection peaks.

In Fig. S6, we use some examples to illustrate the difference between the reflectivity peaks
and the real part of the complex eigenvalues. Fig. S6a shows the case when there is only one
resonance with complex eigenvalue ω0 − iγ; in this case, the reflection peak (red arrow) is at
the same position as the real part of the complex eigenvalue. In contrast, Fig. S6b shows the
case when there are two resonances [equation (S.10)] with κ = 0 and Ω1,2 fixed at ω0 ± b; as
we vary γ1,2, the complex eigenvalues (circles) vary accordingly, whereas the reflectivity peaks
(red arrows) always show up at Ω1,2.

Section VIII, Effects of material loss and gain
The conclusion that reflectivity peaks at the eigenfrequencies Ω1,2 of the Hermitian part is valid
when radiation is the only source of loss and when there is no gain in the system. It no longer
holds when substantial material loss and/or gain is introduced, as we show in this section.

To account for material loss and gain, we extend the Hamiltonian in Section VII to

H =

(
ω1 κ
κ ω2

)
− i

(
γ1 γ12
γ12 γ2

)

︸ ︷︷ ︸
Radiation loss

− i

(
η1 0
0 η2

)

︸ ︷︷ ︸
Material loss/gain

(S.12)

with positive (negative) values of η1,2 describing material loss (gain). Same derivation using
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TCMT yields reflection and transmission as

R(ω) = |g(ω)|2, T (ω) = |1 + g(ω)|2

g(ω) = i
γ1(ω2 − iη2 − ω) + γ2(ω1 − iη1 − ω)− 2γ12κ

(ω1 − iγ1 − iη1 − ω)(ω2 − iγ2 − iη2 − ω)− (κ− iγ12)2
.

(S.13)

When η1,2 is small, the expression reduces back to equation (S.10). When η1,2 is substantial,
neither the reflectivity peaks nor the transmission dips follow the eigenvalues Ω1,2.

To illustrate this point, we consider a system tuned to accidental degeneracy (ω1 = ω2 ≡ ω0)
with only one resonance radiating (γ1 = 1, γ2 = γ12 = 0) and with equal gain/loss for the two
resonances (η1 = η2 ≡ η0). This system has linear Dirac dispersion Ω1,2 = ω0 ± κ for the
eigenfrequency of the Hermitian part, while the complex eigenvalues exhibit an exceptional
point at κ = 1/2. In Fig. S7, we plot the reflection and transmission spectrum for a system with
substantial non-radiative loss (η0 = 0.45, Fig. S7a), a purely passive system (η0 = 0, Fig. S7b),
and a system with substantial gain (η0 = −0.25, Fig. S7c). On top of the plots, we indicate the
reflection peaks (blue solid lines) and transmission dips (red solid lines), as well as the eigen-
frequency of the Hermitian part (green dashed lines) and the real part of the eigenvalues (green
solid lines). As can be seen, in the passive case the reflection peaks and transmission dips follow
the linear dispersion of Ω1,2, whereas in the cases with substantial non-radiative loss or material
gain, the reflection peaks and transmission dips show branching behavior instead.

Section IX, Full derivation using temporal coupled-mode theory (TCMT)
Here, we provide the derivation of reflectivity using temporal coupled-mode theory (TCMT) [5–
10] in a more general setup than the previous two sections. We will account for the direct
(non-resonant) reflection process in between layers of dielectric, include arbitrary number of
n resonances (as there are other nearby resonances that modify the spectrum) with arbitrary
symmetries, and account for the non-radiative loss. We use the resulting expression to fit the
experimentally measured reflection data and extract the Hamiltonian matrix elements and eigen-
values.

The time evolution of these n resonances, whose complex amplitudes are denoted by an
n× 1 column vector A, is described by the Hamiltonian H and a driving term,

dA

dt
= −iHA+KTs+, (S.14)

where the Hamiltonian is an n× n non-Hermitian matrix

H = Ω− iΓ− iγnr, (S.15)

with Ω denoting its Hermitian part that describes a lossless system, −iΓ denoting its anti-
Hermitian part from radiation loss, and −iγnr its anti-Hermitian part from non-radiative decays.
The non-radiative decay includes both material absorption and scattering from surface rough-
ness (in our system, surface roughness is the primary contribution [2]), and here we consider it
to be the same for all resonances, so γnr is a real number instead of a matrix.
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Reflectivity measurements couple the n resonances to the incoming and outgoing planewaves,
whose complex amplitudes we denote by two 2 × 1 column vectors, s+ and s−. The direct re-
flection and transmission of the planewaves through the slab (in the absence of resonances) are
described by a 2× 2 complex symmetric matrix C, and

s− = Cs+ +DA, (S.16)

where D and K in equation (S.14) are 2 × n complex matrices denoting coupling between the
resonances and the planewaves. We approximate the direct scattering matrix C by that of a
homogeneous slab whose permittivity is equal to the spatial average of the PhC slab [8–10].
Lastly, outgoing planewaves into the silica substrate are reflected at the silica-silicon interface,
so

s2+ = e2iβhsr23s2−, (S.17)

where hs is the thickness of the silica substrate with refractive index ns = 1.46, β =
√

n2
sω

2

c2 − |k∥|2
is the propagation constant in silica, and r23 is the Fresnel reflection coefficient between silica
and the underlying silicon. The formalism described above is the same as Ref [9] except that
here we account for the coupling between the n resonances (off-diagonal terms of H).

For steady state with e−iωt time dependence, we solve for vector A from equation (S.14) to
get the scattering matrix of the whole system that includes both direct and resonant processes,

s− = (C + Cres)s+, (S.18)

where the effect of the n resonances is captured in a 2× 2 matrix

Cres = iD(ω −H)−1KT. (S.19)

We can solve equation (S.17) and equation (S.18) to obtain the reflectivity

R(ω) =

∣∣∣∣
s1−
s1+

∣∣∣∣
2

. (S.20)

In this expression, the only unknown is Cres. Therefore, by comparing the experimentally mea-
sured reflectivity spectrum and the one given by TCMT in equation (S.20), we can extract the
unknown parameters in the resonant scattering matrix Cres and obtain the eigenvalues of the
Hamiltonian H .

The remaining task is to write Cres using as few unknowns as possible so that the eigenvalues
of H can be extracted unambiguously. In equation (S.19), there are a large number of unknowns
in the matrix elements of H , D, and K, but there is much redundancy because the matrix
elements are not independent variables and because Cres is independent of the basis choice.
Below, we show that we can express Cres with only 2n + 1 unknown real numbers, and these
2n+ 1 real numbers are enough to determine the n complex eigenvalues of H .

First, we normalize the amplitudes of A and s± such that their magnitudes squared are the
energy of the resonances per unit cell and the power of the incoming/outgoing planewaves per
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unit cell, respectively. Then, energy conservation, time-reversal symmetry, and C2 rotational
symmetry of the PhC slab [5,13] require the direct scattering matrix to satisfy C† = C∗ = C−1

and the coupling matrices to satisfy D†D = 2Γ, K = D, and CD∗ = −D. It follows that the
matrix Γ is real and symmetric. Next, using the Woodbury matrix identity and these constraints,
we can rewrite equation (S.19) as

Cres = −2W (2 +W )−1 C, (S.21)

where W ≡ iD(ω − Ω+ iγ0)−1D† is a 2-by-2 matrix.
We note that the matrix W , and therefore the matrix Cres, is invariant under a change of

basis for the resonances through any orthogonal matrix U (where Ω is transformed to UΩU−1,
and D is transformed to DU−1). The eigenvalues of H is also invariant under a change of
basis. Therefore, we are free to choose any basis. We kept the basis choice general in the two-
resonance system described in the previous two sections, but here for the purpose of fitting, we
need as few unknowns as possible, and it is most convenient to choose the basis where Ω is
diagonal. So we let Ωij = Ωjδij , with {Ωj}nj=1 being the eigenvalues of Ω.

To proceed further, we note that the PhC slab sits on a silica substrate with ns = 1.46 and is
immersed in a liquid with n = 1.48, so the structure is nearly symmetric in the z direction. The
mirror symmetry requires the coupling to the two sides to be symmetric or anti-symmetric [7],

D1j

D2j
≡ σj = ±1, j = 1, . . . , n, (S.22)

where σj = 1 for TE-like resonances and σj = −1 for TM-like resonances, in the convention
where (Ex, Ey) determines the phase of Aj and s±. Then, the diagonal elements of Γ are related
to D by Γjj ≡ γj = |D1j|2, and in this basis we have

W =
n∑

j=1

iγj
ω − Ωj + iγnr

(
1 σj

σj 1

)
. (S.23)

This completes our derivation. Equations (S.21) and (S.23) provide an expression for Cres that
depends only on 2n+ 1 unknown non-negative real numbers: the n eigenvalues {Ωj}nj=1 of the
Hermitian matrix Ω, the n diagonal elements {γj}nj=1 of the real-symmetric radiation matrix Γ
in the basis where Ω is diagonal, and the non-radiative decay rate γnr.

At each angle and each polarization, we fit the experimentally measured reflectivity spec-
trum to the TCMT expression equation (S.20) to determine these 2n + 1 unknown parameters.
Fig. 3a and Fig. S8a show the comparison between the experimental reflectivity spectrum and
the fitted TCMT reflectivity spectrum at some representative angles. The near-perfect agree-
ment between the two demonstrates the validity of the TCMT model.

To obtain the eigenvalues of the Hamiltonian H , we also need to know the off-diagonal
elements of Γ. From D†D = 2Γ and D1j/D2j = σj , we see that Γij = 0 when resonance i and
resonance j have different symmetries in z (i.e. when σiσj ̸= 1), and that Γij = ±√

γiγj when
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σiσj = 1. In the latter case, the sign of Γij depends on the choice of basis; the eigenvalues of
H are independent of the basis choice, so to calculate the eigenvalues of H , we can simply take
the positive roots of all of the non-zero off-diagonal elements of Γ.

We note that the model Hamiltonians introduced previously, such as equation (1) in the main
text and equation (S.6) above, are all special cases of the general Hamiltonian in equation (S.15)
that we consider in the TCMT formalism in this section. The TCMT formalism in this section
does not make assumptions on the particular forms of the matrix elements (aside from basic
principles such as energy conservation and time-reversal symmetry), so it can be used as an
unbiased method for analyzing the experimental data.
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Supplementary Figure 1: Eigenfunctions in the Hermitian PhC and the non-Hermitian
PhC slab. a, Numerically calculated band structure and eigenfunctions for the Hermitian 2D
PhC. The basis eigenfunctions at the Γ point (Ψ1 and Ψ2) are shown in the black box. The
eigenfunctions away from Γ point (at kxa/2π = 0.0035) are shown in the red and blue boxes,
agreeing well with the analytical prediction of Ψ1 ± Ψ2. b, Corresponding results for the non-
Hermitian PhC slab, showing the basis eigenfunctions at the Γ point (black box) and the two
eigenfunctions near the exceptional point (kxa/2π = 0.0035, red and blue boxes). The two
eigenfunction near EP almost coalesce and both agree with the analytical prediction of Ψ1−iΨ2.
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Supplementary Figure 2: Simulation results of the complex eigenvalues of the PhC slabs
with and without accidental degeneracy. The real (upper panels) and imaginary (lower pan-
els) parts of the complex eigenvalues are shown for structures with (b) and without (a, c) acci-
dental degeneracy. The bands with quadrapole modes in the middle of the Brillouin zone are
shown in red solid lines, while the bands with the dipole mode are shown in blue solid lines
and gray dashed lines. The bands shown in red and blue solid lines couple to each other, while
the band in gray dashed lines is decoupled from the other two due to symmetry. When acci-
dental degeneracy happens (at r = rc as shown in b), the characteristic branching features are
observed, demonstrating the existence of EPs. When the accidental degeneracy is lifted, the
quadrupole band splits from the dipole bands from different directions: from the bottom when
radius of the holes is too small (r < rc as shown in a), or from the top when the radius is too
big (r > rc as shown in c).
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Supplementary Figure 3: Existence of EP along every direction in the momentum space
for the realistic PhC slab structure. a, A loop is created in the parameter space of the structure
(A → B → C → D → A), which does not enclose the EP of the system (point Ep). Here,
r is the radius of the air holes, and kx,y are the in-plane wavevectors. b, For each point along
the loop, we numerically calculate the eigenvalues of the PhC slab with the corresponding hole
radius at the corresponding in-plane wavevector. c, The complex eigenvalues return to their ini-

WWW.NATURE.COM/NATURE | 13

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature



-tial positions at the end of the loop (namely, the blue dot and the red dot come back to them-
selves) when the system parameters come back to point A. d,e,f, Another loop is created
(A′ → B′ → C ′ → D′ → A′), which encloses an EP of the system (the same point Ep as
in a). Following this new loop, the two eigenvalues switch their positions at the end of the loop
(namely, the blue dot and the red dot switch their positions) when the system parameters come
back to point A′. g,h, The two complex eigenvalues always switch their positions when we
choose the right loops along other directions in the momentum space (Γ to N in g and Γ to M
in h).
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Supplementary Figure 4: Experimental results of reflectivity showing an accidental Dirac
cone. Light with different polarizations (s and p) is selected to excite different resonances of the
PhC slab along different directions in the k space. Depending on the choice of polarization, the
two bands forming the conical dispersion are excited (s-polarized along Γ-X and p-polarized
along Γ-M, shown in the left panel), or the flat band in the middle is excited (p-polarized along
Γ-X and s-polarized along Γ-M, shown in the right panel).
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Supplementary Figure 5: Experimental results of reflectivity from PhC slabs with and
without accidental degeneracy. Angle-resolved reflectivity along the Γ to X direction, mea-
sured for three different PhC slabs: a, with bigger hole radius than the structure with accidental
degeneracy (r > r′); b, with accidental degeneracy (r = r′); c, with smaller hole radius than
the structure with accidental degeneracy (r < r′). The reflectivity peaks of the structures with-
out accidental degeneracy (a,c) follow quadratic dispersions; while the reflectivity peaks of the
structure with accidental degeneracy (b) follow linear Dirac dispersion. Data shown in b is the
same data as in Fig. 2c and the left panel of Fig. S3.
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Supplementary Figure 6: Illustrative reflectivity spectrum from one resonance and from
two coupled resonances. a, When a single resonance dominates, the reflectivity peak is at the
same position as the real part of the complex eigenvalue. b, With two coupled resonances, the
reflectivity peaks (red arrows) no longer follow the eigenvalues of the system (blue circles). As
we vary the radiation loss γ1,2 of the two resonances while fixing the eigenvalues Ω1,2 of the
Hermitian matrix, we see the complex eigenvalues vary, whereas the reflectivity peaks are fixed.
The middle panel of (b) shows a situation when the two complex eigenvalues coalesce into an
EP.
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Supplementary Figure 7: Effect of material loss and gain on the reflection and transmis-
sion spectra. Reflection spectra (upper panels) and transmission spectra (lower panels) are
plotted for three systems with the same radiation losses, but different material gain/loss: with
material loss (a), purely passive with no gain or loss (b), and with material gain (c). For the
purely passive system (b), the reflection peak (blue solid line) and the transmission dip (red
solid line) correspond to the eigenvalue of the Hermitian part of the Hamiltonian (green dashed
line), and show the linear Dirac dispersion. When material loss (a) or gain (c) is added to the
system, the reflection peaks and transmission dips deviate from the linear Dirac dispersion and
show branching behavior instead. The system parameters are given in Section VIII.
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Supplementary Figure 8: TCMT fitting and visualization of accidental Dirac cone. a, Ex-
amples of reflection spectrum measured at five different incident angles (0◦, 0.14◦, 0.24◦, 0.5◦
and 1◦) along the Γ-X direction for s polarization, with comparison to the TCMT expression in
equation (S.20) after fitting. Dotted lines indicate the resonances, with the two relevant reso-
nances marked in red and blue. b, Parameters obtained from the TCMT fitting. The eigenvalues
for the Hermitian part of the Hamiltonian, Ω1,2, are shown in the left panel and reveal the Dirac
dispersion arising from accidental degeneracy. The diagonal terms for the anti-Hermitian part
of the Hamiltonian, γ1,2, are shown in the right panel. Note that the anti-Hermitian part of
the Hamiltonian also has off-diagonal terms, so Ω1,2 and γ1,2 are not the eigenvalues of the
Hamiltonian. The eigenvalues of the Hamiltonian are shown in Fig. 3 of the main text.
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